電腦主板的開關電源供電方式
開關電源供電方式這是目前廣泛采用的供電方式,例如:筆記本電源適配器、臺式電腦的開關電源,液晶顯示器的開關電源,液晶電視的開關電源、投影進的開關電源、打印機復印機電源,振蕩控制器IC芯片提供振蕩脈沖信號,使得場效應管MOSFET1與MOSFET2輪流導通。扼流圈L0與L1是作為儲能電感使用并與相接的電容組成LC濾波電路。 當負載兩端的電壓VCORE(如CPU需要的電壓)要降低時,通過MOSFET場效應管的開關作用,外部電源對電感進行充電并達到所需的額定電壓。當負載兩端的電壓升高時,通過MOSFET場效應管的開關作用,外部電源供電斷開,電感釋放出剛才充入的能量,這時的電感就變成了電源繼續對負載供電。隨著電感上存儲能量的消耗,負載兩端的電壓開始逐漸降低,外部電源通過MOSFET場效應管的開關作用又要充電。依此類推在不斷地充電和放電的過程中就行成了一種穩定的電壓,永遠使負載兩端的電壓不會升高也不會降低,這就是開關電源的最大優勢。還有就是由于MOSFET場效應管工作在開關狀態,導通時的內阻和截止時的漏電流都較小,所以自身耗電量很小,避免了線性電源串接在電路中的電阻部分消耗大量能量的問題。這也就是所謂的“單相電源回路”的工作原理。在主板維修過程中,需要對以上開關電源的工作原理做詳細的了解。
單相供電一般可以提供最大25A的電流,而現今常用的CPU早已超過了這個數字,P4處理器功率可以達到70-80瓦,工作電流甚至達到50A,單相供電無法提供足夠可靠的動力,所以現在主板的供電電路設計都采用了兩相甚至多相的設計。就是兩個單相電路的并聯,因此它可以提供雙倍的電流供給,理論上可以綽綽有余地滿足目前CPU的需要了。但實際情況還要添加很多因素,如開關元件性能,導體的電阻,都是影響Vcore的要素。實際應用中存在供電部分的效率問題,電能不會100%轉換,一般情況下消耗的電能都轉化為熱量散發出來,所以我們常見的任何穩壓電源總是電器中最熱的部分。要注意的是,溫度越高代表其效率越低。這樣一來,如果電路的轉換效率不是很高,那么采用兩相供電的電路就可能無法滿足CPU的需要,所以又出現了三相甚至更多相供電電路。但是,這也帶來了主板布線復雜化,如果此時布線設計如果不很合理,就會影響高頻工作的穩定性等一系列問題。目前在市面上見到的主流主板產品有很多采用三相供電電路,雖然可以供給CPU足夠動力,但由于電路設計的不足使主板在極端情況下的穩定性一定程度上受到了限制,如要解決這個問題必然會在電路設計布線方面下更大的力氣,而成本也隨之上升了。 電源回路采用多相供電的原因是為了提供更平穩的電流,從控制芯片PWM發出來的是那種脈沖方波信號,經過LC震蕩回路整形為類似直流的電流,方波的高電位時間很短,相越多,整形出來的準直流電越接近直流。 電源回路對電腦的性能發揮以及工作的穩定性起著非常重要的作用,是主板的一個重要的性能參數。
|